Abstract

Using a novel mouse model, a mitochondrial-nuclear exchange model termed MNX, we tested the hypothesis that inherited mitochondrial haplotypes alter primary tumor latency and metastatic efficiency. Male FVB/N-Tg(MMTVneu)202Mul/J (Her2) transgenic mice were bred to female MNX mice having FVB/NJ nuclear DNA with either FVB/NJ, C57BL/6J, or BALB/cJ mtDNA. Pups receiving the C57BL/6J or BALB/cJ mitochondrial genome (i.e., females crossed with Her2 males) showed significantly (P < 0.001) longer tumor latency (262 vs. 293 vs. 225 days), fewer pulmonary metastases (5 vs. 7 vs. 15), and differences in size of lung metastases (1.2 vs. 1.4 vs. 1.0 mm diameter) compared with FVB/NJ mtDNA. Although polyoma virus middle T-driven tumors showed altered primary and metastatic profiles in previous studies, depending upon nuclear and mtDNA haplotype, the magnitude and direction of changes were not the same in the HER2-driven mammary carcinomas. Collectively, these results establish mitochondrial polymorphisms as quantitative trait loci in mammary carcinogenesis, and they implicate distinct interactions between tumor drivers and mitochondria as critical modifiers of tumorigenicity and metastasis. Cancer Res; 77(24); 6941-9. ©2017 AACR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.