Abstract

Jaminaea angkorensis is an anamorphic basidiomycetous yeast species originally isolated from decaying leaves in Cambodia. Taxonomically, J. angkorensis is affiliated with Microstromatales (Exobasidiomycetes, Ustilaginomycotina, Basidiomycota) and represents a basal phylogenetic lineage of this fungal order. To perform a comparative analysis of J. angkorensis with other basidiomycetes, we determined and analyzed its complete mitochondrial DNA sequence. The mitochondrial genome is represented by 29,999 base pairs long, circular DNA containing 32 % guanine and cytosine residues. Its genetic organization is relatively compact and comprises typical genes for 15 conserved proteins involved in oxidative phosphorylation (atp6, 8, and 9; cob; cox1, 2, and 3; and nad1, 2, 3, 4, 4L, 5, and 6) and translation (rps3), two ribosomal RNAs (rnl and rns) and twenty-two transfer RNAs (trnA-Y). Although the gene content is similar to other basidiomycetes, the gene orders in the examined species exhibit only a limited synteny, reflecting their phylogenetic distances and extensive genome rearrangements. In addition, a comparative analysis of basidiomycete mitochondrial genomes indicates that stop-to-tryptophan reassignment of the UGA codon was accompanied by structural alterations of tRNA-Trp(CCA). These results provide an insight into the evolution of the genetic code in fungal mitochondria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.