Abstract

To evaluate mitochondrial genome alterations, cytochrome c oxidase (COX) activity, and oxidative stress in primary open-angle glaucoma (POAG). Whole mitochondrial genome was screened in 75 POAG cases and 105 controls by polymerase chain reaction (PCR) sequencing. COX activity was measured from peripheral blood mononuclear cells (PBMCs). A protein modeling study was done to evaluate the impact of G222E variant on protein function. Levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-isoprostane (8-IP), and total antioxidant capacity (TAC) were also measured. A total of 156 and 79 mitochondrial nucleotide variations were found in the cohort of 75 POAG patients and 105 controls, respectively. Ninety-four (60.26%) variations spanned the coding region, and 62 (39.74%) variations spanned noncoding regions (D-loop, 12SrRNA, and 16SrRNA) of mitochondrial genome in POAG patients. Out of 94 nucleotide changes in coding region, 68 (72.34%) were synonymous changes, 23 (24.46%) non-synonymous, and three (3.19%) were found in the region coding for transfer ribonucleic acid (tRNA). Three changes (p.E192K in ND1, p.L128Q in ND2, and p.G222E in COX2) were found to be pathogenic. Twenty-four (32.0%) patients were positive for either of these pathogenic mitochondrial deoxyribonucleic acid (mtDNA) nucleotide changes. Majority of cases (18.7%) had pathogenic mutation in COX2 gene. Patients who harbored pathogenic mtDNA change in COX2 gene had significantly lower levels of COX activity (p < 0.0001) and TAC (p = 0.004), and higher levels of 8-IP (p = 0.01) as compared to patients who did not harbor this mtDNA. G222E changed the electrostatic potential and adversely impacted protein function of COX2 by affecting nonpolar interactions with neighboring subunits. Pathogenic mtDNA mutations were present in POAG patients, which were associated with reduced COX activity and increased levels of oxidative stress. POAG patients should be evaluated for mitochondrial mutations and oxidative stress and may be managed accordingly with antioxidant therapies. Mohanty K, Mishra S, Dada R, et al. Mitochondrial Genome Alterations, Cytochrome C Oxidase Activity, and Oxidative Stress: Implications in Primary Open-angle Glaucoma. J Curr Glaucoma Pract 2022;16(3):158-165.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.