Abstract

MITOCHONDRIAL GENE EXPRESSION IN HUMAN MONONUCLEAR CELLS By Monika D. Ruchala, M.S. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. Virginia Commonwealth University, 2014. Director: Dr. James P. Bennett Jr, M.D., Ph.D., Bemiss Professor Departments of Neurology, Psychiatry and Physiology and Biophysics Adult neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), have been intensively studied in recent years in pursuit of mechanisms responsible for origin and progression. One emerging theme is mitochondrial energetic deficiency as a mechanism of neuronal death. Recent descriptions of protocols to generate induced pluripotent stems cells (iPSCs) from living patients offer the potential to create unique disease models. This model can potentially lead to crucial advances in developing treatment options for a wide variety of neurodegenerative diseases. In this thesis, we attempt to induce iPSCs from mononuclear cells (MNC) in peripheral blood acquired from patients with ALS and healthy control (CTL) subjects, and analyze their mitochondrial genomes. The reprogramming of MNC to yield iPSC was done by nucleofection of an episomal plasmid pEBC5, expressing OriP sequences of the Epstein­Barr and five reprogramming transgenes Oct4, Sox2, Klf4, c-Myc and Lin28. We investigated the expression of mitochondrial DNA genes, ND2, ND4, COXIII and 12s rRNA in the ALS and CTL MNC before and after their culturing. The results implicate deregulated mitochondrial bioenergetics as a characteristic of ALS. Future work will establish whether these abnormalities in mitochondrial bioenergetics persist in iPSC’s and iPSC-derived neurons from ALS subject

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.