Abstract

Mitochondria are the key source of cellular ATP and their structure and function are markedly affected by pathophysiologic processes associated with the host's response to invading pathogens. In particular, the highly reactive compound peroxynitrite, generated by the reaction of nitric oxide and superoxide anions, inhibits mitochondrial enzymes and damages lipids, proteins, and nucleic acids. Enhanced oxidative stress induces DNA strand breaks that are repaired by activation of poly(ADP-ribose)polymerase (PARP). This process consumes large amounts of nicotinamide adenine dinucleotide (NAD(+)) leading to cellular NAD(+) depletion that impairs flux of reducing equivalents into the respiratory chain and also further promotes inflammation. In experimental studies, novel therapeutic strategies that aim to ameliorate the host's pathogen response or to modulate intracellular signaling events related to oxidative stress protected mitochondrial function and preserved cellular respiration ultimately leading to improved organ function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.