Abstract

Doxorubicin (DOX)-induced cardiac damage remains a leading cause of death amongst cancer survivors. DOX-induced cardiotoxicity (DIC) is mediated by disturbed mitochondrial dynamics, but it remains debated that the mechanisms by which DOX disrupted equilibrium between mitochondrial fission and fusion. In the present study, we observed DOX induced mitochondrial elongation in multiple cardiovascular cell lines. Mechanically, DOX not only downregulated the mitochondrial fusion proteins including Mitofusin 1/2 (MFN1/2) and Optic atrophy 1 (OPA1), but also induced lower motility of dynamin-related protein 1(Drp1) and its phosphorylation on 637 serine, which could inhibit mitochondrial fission. Interestingly, DOX failed to induce mitochondrial elongation in cardiomyocytes co-treated with protein kinase A (PKA) inhibitor H89 or expressing phosphodeficient Drp1-S637A variants. Besides, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was able to blocked the mitochondrial elongation induced by DOX treatment, which could be phenocopied by OPA1 knockdown. Therefore, we speculated that DOX inhibited both mitochondrial fission and fusion simultaneously, yet enabled mitochondrial fusion dominate the mitochondrial dynamics, resulting in mitochondrial elongation as the main manifestation. Notably, blocking mitochondrial elongation by inhibiting Drp1-S637 phosphorylation or OPA1 knockdown aggravated DOX-induced cardiomyocytes death. Based on these results, we propose a novel mechanistic model that DOX-induced mitochondrial elongation is attributed to the equilibrium disturbance of mitochondrial dynamics, which serves as an adaptive response and confers protection against DIC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.