Abstract

Regulatory dynamics of energy metabolism in living cells entails a coordinated response of multiple enzyme networks that operate under non-equilibrium conditions. Here we show that mitochondrial dysfunctions associated with the aging process significantly modify nonlinear dynamical signatures in free radical generation/removal thereby altering energy metabolism in liver cells. Combining high spatial and temporal resolution imaging and bio-energetic measurements, our work provides experimental support to the hypothesis that mitochondria manifest nonlinear dynamical behavior for efficiently regulating energy metabolism in intact cells and any partial or complete reduction in this behavior would contribute to organ dysfunctions including aging process and other disease processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.