Abstract

Hypertensive patients exhibit decline in capillary density and endothelial progenitor cells (EPCs). However, whether capillary rarefaction in hypertension is associated with defect angiogenesis of EPCs remains unknown. We hypothesized that impaired mitochondrial function of late EPCs in hypertension is associated with the structural lack of capillary microcirculation via deficient CXCR4/JAK2/SIRT5 signaling. Capillary density of nail fold was significantly reduced in hypertensive patients, which was paralleled to decreased in vitro late EPC function and in vivo angiogenic capacity. Meanwhile the decline of EPC function in hypertension was accompanied by impaired mitochondrial ultrastructure, diminished mitochondrial membrane potential, reduced oxygen consumption, increased ROS generation and NADH level. Furthermore, SIRT5 expression of EPCs in hypertension was markedly reduced, which was correlated to mitochondrial dysfunction. CXCR4 gene transfer enhanced SIRT5 expression, improved mitochondrial functions and augmented angiogenic capacity of EPCs. The beneficial impacts of SIRT5 up-regulation on late EPC-mediated angiogenesis can be abrogated by blockade of CXCR4/JAK2/SIRT5 signaling pathway. Mitochondrial dysfunction-mediated fall in angiogenic capacity due to deficient CXCR4/JAK2/SIRT5 signaling of late EPCs is probably responsible for the capillary rarefaction in hypertension. Our findings provide insight into the potential of EPC mitochondria as a novel target for the treatment of hypertension-related loss of microvascular density. Funding: This work was supported by the National Nature Science Foundation (31530023, 81500205, 81671379) of China, 973 Program (2013CB531200), the Nature Science Foundation (2016A030310184, 2016A020215056) of Guangdong and Science and Technology Planning Project (2017A020215085) of Guangdong. Declaration of Interest: None. Ethical Approval: The study protocol was approved by the Ethics Committee of the First Affiliated Hospital of Sun Yat-sen University (Guangzhou, China).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.