Abstract
Insulin resistance (IR) is fundamental to the development of type 2 diabetes (T2D) and is present in most prediabetic (preDM) individuals. Insulin resistance has both heritable and environmental determinants centered on energy storage and metabolism. Recent insights from human genetic studies, coupled with comprehensive in vivo and ex vivo metabolic studies in humans and rodents, have highlighted the critical role of reduced mitochondrial function as a predisposing condition for ectopic lipid deposition and IR. These studies support the hypothesis that reduced mitochondrial function, particularly in insulin-responsive tissues such as skeletal muscle, white adipose tissue, and the liver, is inextricably linked to tissue and whole body IR through the effects on cellular energy balance. Here we discuss these findings as well as address potential mechanisms that serve as the nexus between mitochondrial malfunction and IR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.