Abstract

Proteinuria is involved in the development of tubular lesions and in the progressive loss of renal function in chronic kidney diseases via uncertain mechanisms. Growing evidence suggests a pathogenic role of mitochondrial dysfunction in chronic kidney diseases. Therefore, the present study aimed to define the roles of mitochondria in proteinuria-induced renal tubular injury and their underlying mechanisms. Using the albumin-overload mouse model, we observed severe tubular structure damage and striking tubular cell apoptosis. Furthermore, tubular epithelial cells displayed a loss of E-cadherin expression and gained expression of α-smooth muscle actin and vimentin, indicating a cellular phenotypic alteration. Strikingly, these albumin overload-induced abnormalities were robustly blocked by a mitochondrial SOD2 mimic, Mn(III) tetrakis (4-benzoic acid)porphyrin chloride (MnTBAP). In agreement with these results, we observed a marked change in mitochondrial morphology accompanied by mitochondrial cytochrome c release and a copy number reduction of mitochondrial DNA. These alterations were largely reversed by MnTBAP, suggesting a key role for mitochondria-derived oxidative stress in mediating the albumin effect on mitochondrial dysfunction and subsequent tubular injury. Moreover, the NOD-like receptor family, pyrin domain-containing 3 (NLRP3)/caspase-1/cytokine cascade was activated in the kidney by albumin overload and was entirely abolished by MnTBAP. In albumin-treated mouse proximal tubular cells, albumin directly induced ROS production, mitochondrial dysfunction, NLRP3/caspase-1/cytokine cascade activation, cell apoptosis, and cellular phenotypic transition. Similar to our in vivo results, treatment with either MnTBAP or cyclosporin A, a mitochondrial permeability transition pore inhibitor, remarkably attenuated these abnormalities in cells. Taken together, these novel findings demonstrate a potential role for the mitochondrial dysfunction/NLRP3 inflammasome axis in the pathogenesis of proteinuria-induced renal tubular injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.