Abstract

Mitochondrial dysfunction is heavily implicated in the ageing process. Increasing age in mammals correlates with accumulation of somatic mitochondrial DNA (mtDNA) mutations and decline in respiratory chain function. The age-associated respiratory chain deficiency is typically unevenly distributed and affects only a subset of cells in various human tissues, such as heart, skeletal muscle, colonic crypts and neurons. Studies of mtDNA mutator mice has shown that increased levels of somatic mtDNA mutations directly can cause a variety of ageing phenotypes, such as osteoporosis, hair loss, greying of the hair, weight reduction and decreased fertility. Respiratory-chain-deficient cells are apoptosis prone and increased cell loss is therefore likely an important consequence of age-associated mitochondrial dysfunction. There is a tendency to automatically link mitochondrial dysfunction to increased generation of reactive oxygen species (ROS), however, the experimental support for this concept is rather weak. In fact, respiratory-chain-deficient mice with tissue-specific mtDNA depletion or massive increase of point mutations in mtDNA typically have minor or no increase of oxidative stress. Mitochondrial dysfunction is clearly involved in the human ageing process, but its relative importance for mammalian ageing remains to be established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call