Abstract

Exploiting zeolitic imidazolate framework (ZIF)-based nanoparticles to synergistically enhance starvation-combined chemotherapy strategies remains an urgent demand. Herein, glucose oxidase (GOX) and doxorubicin (DOX) were facilely incorporated into ZIFs for starvation-combined chemotherapy. The as-prepared DOX/GOX-loaded ZIF (DGZ) exhibited uniform size with good dispersity, effective protection of the GOX activity, and stable delivery of the drugs into tumor. Correspondingly, it could achieve the glucose- and pH-responsive degradation and thus the controllable drug release. As a result, the acidification of glucose accompanied with reactive oxygen species (ROS) production was observed for the starvation-enhanced chemotherapy and the improved degradation. Most importantly, adjustable Zn2+ release was achieved with the biodegradation of DGZ, which thus contributed to an augmented therapeutic outcome via the Zn2+-induced mitochondrial dysfunction and antioxidation dyshomeostasis. These findings, synergized with the enhancement of starvation-combined chemotherapy by inhibiting the mitochondrial energy metabolism and boosting the ROS accumulation using pristine ZIF-based nanoparticles, provide a new insight into the metal-organic framework-based nanomedicine for further cancer treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call