Abstract

Mitophagy and zymophagy are selective autophagy pathways early induced in acute pancreatitis that may explain the mild, auto limited, and more frequent clinical presentation of this disease. Adequate mitochondrial bioenergetics is necessary for cellular restoration mechanisms that are triggered during the mild disease. However, mitochondria and zymogen contents are direct targets of damage in acute pancreatitis. Cellular survival depends on the recovering possibility of mitochondrial function and efficient clearance of damaged mitochondria. This work aimed to analyze mitochondrial dynamics and function during selective autophagy in pancreatic acinar cells during mild experimental pancreatitis in rats. Also, using a cell model under the hyperstimulation of the G-coupled receptor for CCK (CCK-R), we aimed to investigate the mechanisms involved in these processes in the context of zymophagy. We found that during acute pancreatitis, mitochondrial O2 consumption and ATP production significantly decreased early after induction of acute pancreatitis, with a consequent decrease in the ATP/O ratio. Mitochondrial dysfunction was accompanied by changes in mitochondrial dynamics evidenced by optic atrophy 1 (OPA-1) and dynamin-related protein 1 (DRP-1) differential expression and ultrastructural features of mitochondrial fission, mitochondrial elongation, and mitophagy during the acute phase of experimental mild pancreatitis in rats. Mitophagy was also evaluated by confocal assay after transfection with the pMITO-RFP-GFP plasmid that specifically labels autophagic degradation of mitochondria and the expression and redistribution of the ubiquitin ligase Parkin1. Moreover, we report for the first time that vacuole membrane protein-1 (VMP1) is involved and required in the mitophagy process during acute pancreatitis, observable not only by repositioning around specific mitochondrial populations, but also by detection of mitochondria in autophagosomes specifically isolated with anti-VMP1 antibodies as well. Also, VMP1 downregulation avoided mitochondrial degradation confirming that VMP1 expression is required for mitophagy during acute pancreatitis. In conclusion, we identified a novel DRP1-Parkin1-VMP1 selective autophagy pathway, which mediates the selective degradation of damaged mitochondria by mitophagy in acute pancreatitis. The understanding of the molecular mechanisms involved to restore mitochondrial function, such as mitochondrial dynamics and mitophagy, could be relevant in the development of novel therapeutic strategies in acute pancreatitis.

Highlights

  • Acute pancreatitis (AP) is a pancreatic inflammatory condition whose global estimates of incidence and mortality are between 33 and 74 cases per 100,000 person-years, with 1–60 deaths per 100,000 person-years for AP (Xiao et al, 2016)

  • We propose that zymophagy is a protective mechanism set up by Abbreviations: AP, acute pancreatitis; CAE, caerulein; Control groups (CG), control group; DRP1, dynamin-related protein 1; FAEEs, fatty acid ethyl esters; microtubule associated protein light chain 3 (LC3), microtubule associated protein 1 light chain 3; Mnf, Mitofusin; OPA1, optic atrophy 1; PEI, polyethylenimine; PINK1, PTEN-induced kinase 1; Respiratory control ratio (RCR), respiratory control ratio; ROS, reactive oxygen species; vacuole membrane protein-1 (VMP1), vacuole membrane protein 1 (NM_138839)

  • Mitochondrial Function Is Early Affected in the Rat Model of AP With the aim of analyzing pancreatic mitochondrial function during mild pancreatitis, two different approaches were used in the animal model: O2 consumption and ATP production rates which were measured in the isolated mitochondria

Read more

Summary

Introduction

Acute pancreatitis (AP) is a pancreatic inflammatory condition whose global estimates of incidence and mortality are between 33 and 74 cases per 100,000 person-years, with 1–60 deaths per 100,000 person-years for AP (Xiao et al, 2016). Previous studies of our laboratory identified VMP1 (NM_138839) as a novel autophagy-related protein in which its expression is induced in the human pancreas with pancreatitis and in experimental pancreatitis under the G-coupled receptor CCK-R hyperstimulation (Ropolo et al, 2007; Vaccaro et al, 2008; Grasso et al, 2011). Zymophagy is a selective type of autophagy that occurs during AP It may be induced by CCK-R hyperstimulation, mediated by VMP1 expression, which recognizes and sequesters those zymogen granules that are initially activated by the disease. We propose that zymophagy is a protective mechanism set up by Abbreviations: AP, acute pancreatitis; CAE, caerulein; CG, control group; DRP1, dynamin-related protein 1; FAEEs, fatty acid ethyl esters; LC3, microtubule associated protein 1 light chain 3; Mnf, Mitofusin; OPA1, optic atrophy 1; PEI, polyethylenimine; PINK1, PTEN-induced kinase 1; RCR, respiratory control ratio; ROS, reactive oxygen species; VMP1, vacuole membrane protein 1 (NM_138839)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call