Abstract

Therapeutic strategies for Alzheimer disease (AD) have yet to offer a disease-modifying effect to stop the debilitating progression of neurodegeneration and cognitive decline. Rather, treatments thus far are limited to agents that slow disease progression without halting it, and although much work towards a cure is underway, a greater understanding of disease etiology is certainly necessary for any such achievement. Mitochondria, as the centers of cellular metabolic activity and the primary generators of reactive oxidative species in the cell, received particular attention especially given that mitochondrial defects are known to contribute to cellular damage. Furthermore, as oxidative stress has come to the forefront of AD as a causal theory, and as mitochondrial damage is known to precede much of the hallmark pathologies of AD, it seems increasingly apparent that this metabolic organelle is ultimately responsible for much, if not all of disease pathogenesis. In this review, we review the role of neuronal mitochondria in the pathogenesis of AD and critically assess treatment strategies that utilize this upstream access point as a method for disease prevention. We suspect that, with a revived focus on mitochondrial repair and protection, an effective and realistic therapeutic agent can be successfully developed.

Highlights

  • Mitochondrial abnormalities have long been implicated in the aging process, but only recently has their influence been extended to neurodegenerative disease [1,2,3,4]

  • Alzheimer disease (AD), in particular, appears to involve the eventual and progressive dysfunction of neuronal mitochondria; such mitochondrial aberration seems to elicit the hallmark pathologies of the disease, notably amyloid-β (Aβ) plaques and hyperphosphorylated microtubule-associated protein tau in the form of neurofibrillary tangles (NFTs), and seems responsible for the characteristic neurodegeneration found in AD [5]

  • Mitochondria are associated with neurodegeneration in AD for several reasons, including: (1) They are the primary generators of reactive oxidative species (ROS) within the cell [3]; (2) Damage to mitochondrial structural components and enzyme complexes are well documented in AD and vastly precede any other hallmark feature of the disease [6,7,8,9]; and (3)

Read more

Summary

Mitochondrial Drugs for Alzheimer Disease

Received: 23 October 2009; in revised form: 14 December 2009 / Accepted: 16 December 2009 /

Introduction
Findings
Current Treatment Perspectives
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.