Abstract

Approximately 1.7 kbp of mitochondrial DNA were sequenced from 29 individuals assignable to 11 Uromastyx species or subspecies and two other agamids. U. ocellata and U. ornata had an insertion between the glutamine and isoleucine tRNA genes, which could be folded into a stable stem-and-loop structure, and the insertion for U. ornata additionally retained a sequence similar to the glutamine tRNA gene. This corroborates the role of tandem duplication in reshaping mitochondrial gene arrangements, and supports the idea that the origin of light-strand replication could be relocated within mitochondrial genomes. Molecular phylogeny from different tree-building methods consistently placed African and Arabian taxa in mutually monophyletic groups, excluding U. hardwickii inhabiting India and Pakistan. Unlike previous studies based on morphology, U. macfadyeni did not cluster with morphologically similar Arabian taxa, suggesting convergent evolution to be responsible for the morphological similarities. Divergence times estimated among the Uromastyx taxa, together with geological and palaeontological evidence, suggest that the Uromastyx agamids originated from Central Asia during the Eocene and colonized Africa after its connection with Eurasia in the early Miocene. Their radiation may have been facilitated by repeated aridification of North Africa since the middle Miocene, and geological events such as the expansion of the Red Sea and the East African Rift Valley.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.