Abstract

Guppies were sampled from eight populations representing four river drainage basins in northern Trinidad, and from one population on the nearby island of Tobago. For each individual, a 465 base pair (bp) segment of the control region of the mitochondrial genome was sequenced. The resulting DNA sequences were subjected to sequence divergence calculations and the populations were linked by maximum parsimony analysis to determine their phylogenetic relationships. Mitochondrial DNA (mtDNA) sequence variation was found both within and between river drainages, correlated with the geographic features of northern Trinidad. The variation observed exists primarily between drainages, particularly between the Oropuche drainage and all other Trinidad drainages examined. Estimates of time of divergence between guppy populations of different drainages, based on mtDNA sequence variation, ranged from 100,000 to 200,000 for the most recently separated populations and from 600,000 to 1.2 million years between the Oropuche populations and all others examined. Examination of fish from northeastern South America will be required to determine whether these populations differentiated in their present locations or were the result of separate invasions of Trinidad from different Venezuelan sources. However, genetic isolation of these populations appears to predate the current physical separation of the island of Trinidad from the Venezuelan mainland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call