Abstract

The full complement of known greenbug, Schizaphis graminum (Rondani), biotypes found in the USA were subjected to a molecular phylogenetic analysis based on a 1.2-kb portion of the cytochrome oxidase I mitochondrial gene. In addition to these nine biotypes (B, C, E, F, G, H, I, J and K), a probable isolate of the enigmatic biotype A (NY), a 'new biotype' collected from Elymus canadensis (L.) (CWR), and an isolate from Germany (EUR) were included. Schizaphis rotundiventris (Signoret) was included as an outgroup. Genetic distances among S. graminum biotypes ranged from 0.08% to 6.17% difference in nucleotide substitutions. Neighbour-joining, maximum parsimony and maximum likelihood analyses all produced dendrograms revealing three clades within S. graminum. Clade 1 contained the 'agricultural' biotypes commonly found on sorghum and wheat (C, E, K, I, plus J) and there were few substitutions among these biotypes. Clade 2 contained F, G and NY, and Clade 3 contained B, CWR and EUR, all of which are rarely found on crops. The rarest biotype, H, fell outside the above clades and may represent another Schizaphis species. S. graminum biotypes are a mixture of genotypes belonging to three clades and may have diverged as host-adapted races on wild grasses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call