Abstract

Each mitochondrion consists of 16,569 base pairs which encodes 37 genes, all of which are essential for normal mitochondrial function (Anderson et al., 1981). Each human cell contains several hundred copies of mitochondrial DNA, encoding 13 genes that are required for oxidative phosphorylation, 22 transfer RNAs and 2 ribosomal RNAs (Anderson et al., 1981). Mitochondria are vital organelles, which generate the majority of the cells energy through oxidative phosphorylation (Wallace, 2005). During this process, reactive oxygen species (ROS) are produced, that can leak out and react with a range of cellular components, including the mitochondrial genome (Richter et al., 1988). Therefore, it has been suggested that levels of oxidative DNA damage are higher in mitochondrial DNA than in nuclear DNA, with mitochondrial DNA accumulating mutations at a 10to 50fold higher rate (Hudson et al., 1998; Michikawa et al., 1999; Pakendorf and Stoneking, 2005; Yakes and Van Houten, 1997). If this mitochondrial DNA damage is not repaired, it can lead to disruption of the electron transport chain and increased generation of ROS, possibly resulting in vicious cycle of ROS production and mitochondrial DNA damage, leading to energy depletion and ultimately cell death (Harman, 1972; Miquel et al., 1980). Therefore suggesting that mitochondria must employ some form of repair or defence mechanism against such forms of deleterious damage. The integrity of mitochondrial DNA repair plays a central role in maintaining homeostasis in the cell and thus the efficient repair of mitochondrial DNA damage serves as an essential function in cellular survival. In comparison to nuclear DNA repair, our knowledge regarding mitochondrial DNA repair is limited. In fact, it was originally believed that mitochondria employed no repair mechanisms and damaged DNA was not repaired, but was merely degraded. This was primarily based on a study published in 1974, which demonstrated the inability of mitochondria to remove cyclobutyl pyrimidine dimers after exposure to ultraviolet light (Clayton et al., 1974). This theory remained for many years, but now it is abundantly clear that multiple DNA repair pathways and the controlled degradation of mitochondrial DNA, work together to maintain the integrity of the mitochondrial genome (Berneburg et al., 2006; Liu and Demple, 2010). Initially the repair of most mitochondrial DNA damage was thought to be limited to short-patch base excision repair (BER) (Stierum et al., 1999). However, the complex range of DNA lesions inflicted on mitochondrial DNA by ROS and potential replication errors indicated that such a restricted repair mechanism would be insufficient. Our knowledge of mitochondrial DNA repair has recently witnessed a rapid expansion and it is now evident that mitochondria also employ

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call