Abstract
Polymorphisms of mitochondrial DNA (mt-DNA) are particularly useful for monitoring specific pathogen populations like Phytophthora infestans. Basically type I and II of P. infestans mt-DNA were categorized by means of polymorphism lengths caused by an ~2kb insertion, which can be detected via restriction enzyme digestion. In addition genome sequencing of haplotype Ib has been used as a simple Polymerase Chain Reaction–Restriction Fragment Length Polymorphism (PCR–RFLP) method to indirectly identify type I and II alterations through EcoR I restriction enzyme DNA fragment patterns of the genomic P4 area. However, with the common method, wrong mt-DNA typing occurs due to an EcoR I recognition site mutation in the P4 genomic area. Genome sequencing of the four haplotypes (Ia, Ib, IIa, and IIb) allowed us to thoroughly examine mt-DNA polymorphisms and we indentified two hypervariable regions (HVRs) named HVRi and HVRii. The HVRi length polymorphism caused by a 2kb insertion/deletion was utilized to identify mt-DNA types I and II, while another length polymorphism in the HVRii region is caused by a variable number of tandem repeats (n=1, 2, or 3) of a 36bp sized DNA stretch and was further used to determine mt-DNA sub-types, which were described as Rn=1, 2, or 3. Finally, the P. infestans mt-DNA haplotypes were re-defined as IR1 or IIR2 according to PCR derived HVRi and HVRii length polymorphisms. Twenty-three isolates were chosen to verify the feasibility of our new approach for identifying mt-DNA haplotypes and a total of five haplotypes (IR1, IR2, IR3, IIR2 and IIR3) were identified. Additionally, we found that six isolates determined as type I by our method were mistakenly identified as type II by the PCR–RFLP technique. In conclusion, we propose a simple and rapid PCR method for identification of mt-DNA haplotypes based on sequence analyses of the mitochondrial P. infestans genome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.