Abstract

The comparative molecular phylogeography of regional fish fauna has revealed the wide distribution of young clades in freshwater fishes of formerly glaciated areas as well as interspecific incongruences in their refugial origins and recolonization routes. In this study, we employed single-strand conformation polymorphism (SSCP) and sequence analyses to describe mitochondrial DNA (mtDNA) polymorphism among 27 populations of the lake cisco (Coregonus artedi) from its entire range of distribution in order to evaluate the hypothesis of dual glacial refuges proposed by Bernatchez & Dodson against the traditional view that this species is solely of Mississippian origin. Results indicate that this taxon is composed of two closely related groups that are widely distributed and intermixed over most of the sampled range. The estimated level of divergence (0.48%), the contrast in the geographical distribution of each group, as well as the general distribution of C. artedi in North America together support the hypothesis that one group dispersed from a Mississippian refuge via the proglacial lakes, while the other is of Atlantic origin and also took advantages of earlier dispersal routes towards eastern Hudson Bay drainages. However, the signal of past range fragmentation revealed by a nested clade analysis was weak, and did not allow to formally exclude the hypothesis of a single Mississippian origin for both lineages. Comparisons with the phylogeographic patterns of other Nearctic freshwater fishes suggest that the salinity tolerance and thermal sensitivity of lake cisco may have been determinant for its extensive postglacial dispersal. The presence or co-occurrence of sympatric or allopatric eco/morphotypes were not found to be necessarily associated with the presence of both haplotype groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.