Abstract
To obtain information on the mechanisms responsible of the generation of ragged red fibers (RRF) during aging, we analyzed the mitochondrial genotype of single skeletal muscle fibers of healthy individuals having an age comprised between 45 and 92 years. The sequencing of the D-loop region showed many sequence changes with respect to the Cambridge reference sequence (CRS), in both RRF and normal fibers. These changes were more abundant in RRF and their number increased between 50 and 60, and 61 and 70 years and then remained approximately constant. The analysis of the sequence changes showed that each subject contained one or more changes associated to RRF in positions of D-loop region that either do not change or that change very rarely. In general the same type of RRF-associated change was not found in more than one individual; exceptions were changes in positions 189, 295, 374 and 514, detected in 20–50% of analyzed subjects. In particular the A189G age-associated mutation was found only in old individuals and prevalently in RRF. Sequencing of other two mtDNA regions showed no relevant changes in the 16S/ND1 region and two RRF-associated original mutations, G5847A and A5884C, in two very conserved positions of tRNA Tyr. These results indicate that each subject has its own pattern of RRF-associated mutations in both coding and non-coding region of human mtDNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.