Abstract

Cancer development has been ascribed with diverse genetic variations which are identified in both mitochondrial and nuclear genomes. Mitochondrial DNA (mtDNA) alterations have been detected in several tumours which include lung, colorectal, renal, pancreatic and breast cancer. Several studies have explored the breast tumour-specific mtDNA alteration mainly in Western population. This study aims to identify mtDNA alterations of 20 breast cancer patients in Malaysia by next generation sequencing analysis. Twenty matched tumours with corresponding normal breast tissues were obtained from female breast cancer patients who underwent mastectomy. Total DNA was extracted from all samples and the entire mtDNA (16.6kb) was amplified using long range PCR amplification. The amplified PCR products were sequenced using mtDNA next-generation sequencing (NGS) on an Illumina Miseq platform. Sequencing involves the entire mtDNA (16.6kb) from all pairs of samples with high-coverage (~ 9,544 reads per base). MtDNA variants were called and annotated using mtDNA-Server, a web server. A total of 18 of 20 patients had at least one somatic mtDNA mutation in their tumour samples. Overall, 65 somatic mutations were identified, with 30 novel mutations. The majority (59%) of the somatic mutations were in the coding region, whereas only 11% of the mutations occurred in the D-loop. Notably, somatic mutations in protein-coding regions were non-synonymous (49%) in which 15.4% of them are potentially deleterious. A total of 753 germline mutations were identified and four of which were novel mutations. Compared to somatic alterations, less than 1% of germline missense mutations are harmful. The findings of this study may enhance the current knowledge of mtDNA alterations in breast cancer. To date, the catalogue of mutations identified in this study is the first evidence of mtDNA alterations in Malaysian female breast cancer patients.

Highlights

  • Breast cancer is the most common malignancy in women and one of the leading causes of cancer-related deaths in women worldwide, with nearly 2.1 million new cases estimated and responsible for the deaths of 629,679 women in 2018 [1]

  • Albeit numerous studies reported the association of DNA mutations in cancer mainly in Western population, limited research exploring the effects of mitochondrial DNA alterations in Asian population were documented

  • The mitochondrial DNA (mtDNA) copy number per cell varies widely in different human tissues and is maintained to meet the energy requirement to sustain normal physiological functions of the cell [5]. mtDNA consists of 16,569 base pairs which contains 37 essential genes that encode for 13 respiratory chain subunits essential for the oxidative phosphorylation (OXPHOS) system, 22 transfer RNAs and two ribosomal RNAs, namely 12S and 16S that are required for the transcription and translation of mitochondrial proteins [5]

Read more

Summary

Introduction

Breast cancer is the most common malignancy in women and one of the leading causes of cancer-related deaths in women worldwide, with nearly 2.1 million new cases estimated and responsible for the deaths of 629,679 women in 2018 [1]. Breast cancer incidences in Malaysia are estimated to be 7,593 (32.7%) new cases in 2018, with 2,894 deaths [1]. Mitochondria are the energy synthesising organelles in the cells. They are responsible for the generation of adenosine triphosphate (ATP) molecules through oxidative phosphorylation (OXPHOS). Each mitochondrion contains genetically compact circular double-stranded mtDNA loops with an average of 100–10,000 copies per cell at a high copy number. The mtDNA copy number per cell varies widely in different human tissues and is maintained to meet the energy requirement to sustain normal physiological functions of the cell [5]. mtDNA consists of 16,569 base pairs which contains 37 essential genes that encode for 13 respiratory chain subunits essential for the OXPHOS system, 22 transfer RNAs (tRNAs) and two ribosomal RNAs (rRNAs), namely 12S and 16S that are required for the transcription and translation of mitochondrial proteins [5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call