Abstract

BackgroundMitochondrial DNA (mtDNA) genetic variation is associated with neurocognitive (NC) impairment (NCI) in people with HIV (PWH). Other approaches use sequence conservation and protein structure to predict the impact of mtDNA variants on protein function. We examined predicted mtDNA variant pathogenicity in the CHARTER study using MutPred scores, hypothesizing that persons with higher scores (greater predicted pathogenicity) have more NCI. MethodsCHARTER included NC testing in PWH from 2003 to 2007. MutPred scores were assigned to CHARTER participants with mtDNA sequence; any score > 0.5 was considered potentially deleterious. Outcomes at cohort entry were NCI, defined by global and seven NC domain deficit scores, and by mean global and domain NC performance T-scores. Univariate and multivariable regression analyses assessed associations between having a deleterious variant and NCI. Additional models included estimated peripheral blood cell mtDNA copy number. ResultsData were available for 744 PWH (357 African ancestry; 317 European; 70 Hispanic). In the overall cohort, PWH having any potentially deleterious variant were less likely to have motor impairment (16 vs. 25 %, p = 0.001). In multivariable analysis, having a deleterious variant remained associated with lower likelihood of motor impairment (adjusted odds ratio 0.59 [95 % CI 0.41–0.88]; p = 0.009), and better motor performance by T-score (β 1.71 [0.31–3.10], p = 0.02). Associations persisted after adjustment for estimated mtDNA quantity. ConclusionsIn these PWH, having a potentially deleterious mtDNA variant was associated with less motor impairment. These unexpected findings suggest that potentially deleterious mtDNA variations may confer protection against impaired motor function by as yet unknown mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call