Abstract

We have exposed mouse thymocytes and P-815 mastocytoma cells to four different conditions reported to cause apoptosis: 1) incubation in the absence of mitogenic factors; 2) incubation in the presence of dexamethasone; 3) stimulation with external ATP; 4) treatment with high concentrations of the K+ ionophore valinomycin. These treatments caused DNA fragmentation to a varying extent in the two cell types. High stringency hybridization with a cDNA probe specific to a mitochondrial DNA sequence revealed that during apoptosis induced by lack of mitogenic factors, dexamethasone, or extracellular ATP, mitochondrial DNA was not fragmented. On the contrary, valinomycin caused extensive degradation of mitochondrial DNA. These results support the notion that DNA fragmentation during apoptosis is a specific nuclear event and suggest that other agents, such as valinomycin, may act less selectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.