Abstract

Ultraviolet (UV) radiation is thought to be a major contributor to the development of sporadic malignant melanoma of the skin. It may induce alterations in genomic or mitochondrial DNA (mtDNA), especially C to T or CC to TT changes. Mutations or other alterations in mtDNA have been reported in a variety of human cancers and may be due to different mechanisms. In this study, we have attempted to elucidate whether aberrations in the mtDNA of melanoma are due to UV radiation or other factors by investigating two parts of the mitochondrial D-loop and two mitochondrial genes, as well as looking for the delta4977 mtDNA deletion and mtDNA duplications, in 61 primary malignant melanomas and neighbouring normal skin tissue (in 70% of primary tumours; otherwise, corresponding blood samples). Point mutations were a rare feature, occurring in only seven tumour samples and never as a C to T change, whereas mtDNA instability in the D-loop (mtMSI) was found in 13% of primary nodular tumours and 20% of metastases. A de novo delta4977 mtDNA deletion was demonstrated in 10% of melanomas; in 20% of patients, mtDNA duplications and/or the delta4977 mtDNA deletion was detectable. Our data indicate that mtDNA alterations in malignant melanoma are not induced by UV radiation. In addition, point mutations and mtMSI were mostly a feature of nodular and metastatic melanoma samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.