Abstract

IntroductionMaintaining physical and cognitive function among older adults is important. These functional states are affected by mitochondria through various mechanisms, such as cellular energy production and oxidative stress control. Owing to its involvement in the relations among the brain, cognition, and physical function, mitochondrial function may be affected by mitochondrial DNA (mtDNA) haplogroups. This study explored the effect of mtDNA haplogroups and brain microstructure on physical and cognitive functions among community-dwelling older adults. MethodsThis study was a community-based cross-sectional research. A total of 128 subjects aged 65 years and older without dementia completed several assessments, including mtDNA sequencing, physical and cognitive function tests, and magnetic resonance imaging (MRI) scans. Cognitive function and impairment were assessed by the MMSE and AD8 questionnaires. mtDNA haplogroups were classified by HaploGrep 2 software, and white matter microstructural integrity was scanned by 3T MRI. ResultsThe mean age of the subjects was 77.3 years. After the adjustment for covariates, the mtDNA haplogroup D carriers showed significantly lower mini-mental state examination (MMSE) scores than other carriers (p = 0.047). Further considering the brain microstructure, the mtDNA haplogroup D (p = 0.002) and white matter volumes in the left precuneus corrected for total intracranial volumes (p = 0.014) were found to be independently influencing factors of the MMSE scores. ConclusionsThe mtDNA haplogroup D and white matter microstructure regulated the cognitive function among community-dwelling older adults. The findings provide new insights into the research gap. Scientists must further venture into this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call