Abstract

Pro-inflammatory cytokines play a pivotal role in cartilage destruction during the progression of osteoarthritis (OA). Additionally, these cytokines are capable to generate reactive oxygen and nitrogen species within chondrocytes. Mitochondrion is a prime target of oxidative damage and an important player in aging and degenerative processes. The purpose of the present study was to investigate whether these cytokines will alter the mitochondrial DNA (mtDNA) integrity and mitochondrial function in both normal and osteoarthritic human chondrocytes. Primary normal and osteoarthritic human chondrocyte cultures were exposed to various concentrations of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) for different time. Following exposure, chondrocytes were evaluated for mitochondrial DNA damage, ATP production, changes in mitochondrial transcription, and apoptosis. Adenoviral vectors were used to deliver DNA repair enzyme hOGG1 to mitochondria. Pro-inflammatory cytokines IL-1beta and TNF-alpha disturb mitochondrial function in human chondrocytes by inducing mitochondrial DNA damage, decreasing energy production and mitochondrial transcription, which correlated with the induction of apoptosis. Increased NO production was the key factor responsible for accumulation of mtDNA damage after cytokine exposure. Mitochondrial superoxide production was also enhanced following pro-inflammatory cytokine exposure. OA chondrocyte mitochondria were more susceptible to damage induced by pro-inflammatory cytokines then mitochondria from normal chondrocytes. Protection of human chondrocytes from mtDNA damage by the mitochondria-targeted DNA repair enzyme hOGG1 rescued mtDNA integrity, preserved ATP levels, reestablished mitochondrial transcription, and significantly diminished apoptosis following IL-1beta and TNF-alpha exposure. Mitochondrion is an important target in pro-inflammatory cytokine toxicity, maintaining of mitochondrial DNA integrity is necessary to prevent chondrocytes from apoptosis induced by IL-1beta and TNF-alpha.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.