Abstract

TGF-β induces multiple structural and functional changes in quiescent HSCs, including an increase in proliferation, mitochondrial mass, and matrix deposition. HSC transdifferentiation requires significant bioenergetic capacity, and it is not known how TGF-β-mediated transcriptional upregulation is coordinated with the bioenergetic capacity of HSCs. Mitochondria are key bioenergetic organelles, and here, we report that TGF-β induces release of mitochondrial DNA (mtDNA) from healthy HSCs through voltage-dependent anion channels (VDACs), with the formation of an mtDNA-CAP on the external mitochondrial membrane. This stimulates organization of cytosolic cyclic GMP-AMP synthase (cGAS) onto the mtDNA-CAP and subsequent activation of the cGAS-STING-IRF3 pathway. TGF-β is unable to induce conversion of HSCs from a quiescent to a transdifferentiated phenotype in the absence of mtDNA, VDAC, or stimulator of interferon genes (STING). Transdifferentiation by TGF-β is blocked by a STING inhibitor, which also reduces liver fibrosis prophylactically and therapeutically. We have identified a pathway that requires the presence of functional mitochondria for TGF-β to mediate HSC transcriptional regulation and transdifferentiation and therefore provides a key link between bioenergetic capacity of HSCs and signals for transcriptional upregulation of genes of anabolic pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call