Abstract

Genetic diversity of a species is influenced by multiple factors, including the Quaternary glacial-interglacial cycles and geophysical barriers. Such factors are not yet well documented for fauna from the southern border of the Himalayan region. This study used mitochondrial DNA (mtDNA) sequences and ecological niche modeling (ENM) to explore how the late Pleistocene climatic fluctuations and complex geography of the Himalayan region have shaped genetic diversity, population genetic structure, and demographic history of the Nepalese population of Assam macaques (Macaca assamensis) in the Himalayan foothills. A total of 277 fecal samples were collected from 39 wild troops over almost the entire distribution of the species in Nepal. The mtDNA fragment encompassing the complete control region (1121 bp) was recovered from 208 samples, thus defining 54 haplotypes. Results showed low nucleotide diversity (0.0075 ± SD 0.0001) but high haplotype diversity (0.965 ± SD 0.004). The mtDNA sequences revealed a shallow population genetic structure with a moderate but statistically significant effect of isolation by distance. Demographic history analyses using mtDNA sequences suggested a post-pleistocene population expansion. Paleodistribution reconstruction projected that the potential habitat of the Assam macaque was confined to the lower elevations of central Nepal during the Last Glacial Maximum. With the onset of the Holocene climatic optimum, the glacial refugia population experienced eastward range expansion to higher elevations. We conclude that the low genetic diversity and shallow population genetic structure of the Assam macaque population in the Nepal Himalaya region are the consequence of recent demographic and spatial expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call