Abstract
Mitochondrial (mt) tRNA gene mutations are an important cause of human morbidity and are associated with different syndromes. We have previously shown that the mitochondrial protein synthesis elongation factor EF-Tu and isolated sequences from the carboxy-terminal domain of yeast and human mt leucyl-tRNA synthetases (LeuRS), have a wide range of suppression capability among different yeast mt tRNA mutants having defective respiratory phenotype. Here we show that the rescuing capability can be restricted to a specific sequence of six amino acids from the carboxy-terminal domain of mt LeuRS. On the other hand by overexpressing a mutated version of mt EF-Tu in a yeast strain deleted for the endogenous nuclear gene we identified the specific region involved in suppression.Results support the possibility that a small peptide could correct defects associated with many mt tRNA mutations, suggesting a novel therapy for mitochondrial diseases treatment.The involvement of the mt EF-Tu in cellular heat stress response has also been suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.