Abstract

To develop a novel hyperbranched polymer-based nanocarrier for efficient drug delivery to cell mitochondria. Also to study for the first time the cytotoxic effect of doxorubicin via mitochondria-specific delivery system. We introduced alkyltriphenylphosphonium groups (TPP) to a poly(ethylene imine) hyperbranched polymer (PEI). We harnessed the hydrophobic assembly of these alkylTPP functionalized PEI molecules into ~100nm diameter nanoparticles (PEI-TPP) and further encapsulated the chemotherapy agent doxorubicin (DOX), to produce the mitotropic nanoparticles PEI-TPP-DOX. By administering PEI-TPP-DOX to human prostate carcinoma cells DU145, we found that: (i) PEI-TPP-DOX specifically localized at cell mitochondria as revealed by the inherent DOX fluorescence; (ii) in contrast to the slow apoptotic cell death incurred by DOX over the period of days at micromolar concentrations, PEI-TPP-DOX triggered rapid and severe cytotoxicity within few hours of incubation and at submicromolar incubation concentrations. This cytotoxicity was mainly found to be of a necrotic nature, not precluding autophagy related death pathways to a smaller extent. We have elaborated a versatile mitotropic nanocarrier; furthermore, using this platform, we have developed a mitochondrial-doxorubicin formulation with exceptional cytocidal properties, even in nanomolar concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.