Abstract

Mitochondria play a critical role in myocardial cold ischemia-reperfusion (CIR) and induction of apoptosis. The nature and extent of mitochondrial defects and cytochrome c (Cyt c) release were determined by high-resolution respirometry in permeabilized myocardial fibers. CIR in a rat heart transplant model resulted in variable contractile performance, correlating with the decline of ADP-stimulated respiration. Respiration with succinate or N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (substrates for complexes II and IV) was partially restored by added Cyt c, indicating Cyt c release. In contrast, NADH-linked respiration (glutamate+malate) was not stimulated by Cyt c, owing to a specific defect of complex I. CIR but not cold ischemia alone resulted in the loss of NADH-linked respiratory capacity, uncoupling of oxidative phosphorylation and Cyt c release. Mitochondria depleted of Cyt c by controlled hypoosmotic shock provided a kinetic model of homogeneous Cyt c depletion. Comparison to Cyt c control of respiration in CIR-injured myocardial fibers indicated heterogeneity of Cyt c release. The complex I defect and uncoupling correlated with heterogeneous Cyt c release, the extent of which increased with loss of cardiac performance. These results demonstrate a complex pattern of multiple mitochondrial damage as determinants of CIR injury of the heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.