Abstract

We determined the mitochondrial control-region sequences of five turnstones (Arenaria interpres) and three dunlins (Calidris alpina). Comparisons revealed that the central part (part II) is conserved relative to much more variable parts at the beginning (part I) and the end (part III). This pattern of sequence conservation is also found in the control regions of other vertebrates. The average sequence divergence between turnstone and dunlin was 21.8% for part I, 7.5% for part II, and 29.5% for part III. Within-species sequence divergence over the entire control region was much lower, at 0.9% for turnstones and 2.0% for dunlins. In both shorebird species, part III contains a repetitive sequence composed only of A and C nucleotides, which has not been found in the control regions of other birds. A survey of the part I sequences of 25 turnstones and 25 dunlins sampled around the world revealed that these species have very different population genetic structures. Dunlins are not only much more differentiated in their sequences but also have a strongly subdivided population genetic structure. Pleistocene vicariant events combined with strong natal philopatry and high mutation rates of the sequences are likely responsible for this population genetic subdivision. Conversely, part I sequences of turnstones are weakly differentiated and are geographically unstructured. We argue that this is not the result of global gene flow but that, instead turnstones have recently expanded from a refugial population that was bottlenecked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call