Abstract

Parkinson disease (PD) is the most frequent neurodegenerative disorder, affecting about 1% of people over 50 years old. It is caused by the progressive loss of dopaminergic (DA) neurons, accompanied by the accumulation of Lewy bodies, which are abnormal structures inside nerve cells that contain proteins such as a-synuclein, Parkin, and components of the ubiquitin proteasomal pathway (a cellular-degradation pathway). Patients are usually treated with levodopa, and although the drug initially improves motor symptoms, many patients later develop a range of abnormal or uncontrolled muscle movements, called dyskinesias. More than 90% of PD cases are sporadic, but rare genetic forms may yield invaluable information on the pathogenesis of both familial and spontaneous PD. After mutations affecting Parkin, mutations in PINK1 (PTEN-induced putative kinase 1) are the second-most common cause of autosomal recessive PD (where both parents must contribute a defective gene for PD to arise in the offspring). Point or truncation mutations in PINK1 produce PD with a broad phenotypic spectrum, from early-onset with atypical features to typical late-onset PD. Pathogenic PINK1 mutations—of which about 20 have been identified—annihilate or reduce the kinase activity of the protein. A study by Julia W. Pridgeon (Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States) and colleages published in this issue of PLoS Biology shows that the failure of PINK1 to phosphorylate one particular substrate, TRAP1, can sensitize cells to the lethal effects of reactive oxygen species.

Highlights

  • Parkinson disease (PD) is the most frequent neurodegenerative disorder, affecting about 1% of people over 50 years old

  • After mutations affecting Parkin, mutations in PINK1 (PTEN-induced putative kinase 1) are the second-most common cause of autosomal recessive PD

  • Chemicals that inhibit the mitochondrial electron transport complex I or that elicit production of reactive oxygen species can induce PD in humans, suggesting that mitochondria, which produce cellular energy and control cell death, play a major role in human PD [1]. For both neurons and non-neuronal cells, mitochondrial membranes are the battleground on which opposing signals combat to seal the cell’s fate by mitochondrial membrane permeabilization (MMP)

Read more

Summary

Parkinson Disease

Parkinson disease (PD) is the most frequent neurodegenerative disorder, affecting about 1% of people over 50 years old. Chemicals that inhibit the mitochondrial electron transport complex I or that elicit production of reactive oxygen species can induce PD in humans, suggesting that mitochondria, which produce cellular energy and control cell death, play a major role in human PD [1]. It had been shown that overexpression of PINK1 protects cells from apoptosis induced by the general tyrosine kinase inhibitor staurosporine [7,8] and that pathogenic mutations of PINK1 that inactivate its serine/threonine kinase activity [9] do not protect against cell death, implying that its kinase activity is indispensable for this effect It has not been known which substrates phosphorylated by PINK1 would account for its capacity to inhibit lethal MMP

PINK Mutations Place Mitochondria at Risk
Findings
Next Steps

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.