Abstract

IntroductionMitochondrial calcium uniporter (MCU) is a central subunit of MCU complex that regulate the levels of calcium ions within mitochondria. A comprehensive understanding the implications of MCU in clinical prognostication, biological understandings and therapeutic opportunity of breast cancer (BC) is yet to be determined. ObjectivesThis study aims to investigate the role of MCU in predictive performance, tumor progression, epigenetic regulation, shaping of tumor immune microenvironment, and pharmacogenetics and the development of anti-tumor therapy for BC. MethodsThe downloaded TCGA datasets were used to identify predictive ability of MCU expressions via supervised learning principle. Functional enrichment, mutation landscape, immunological profile, drug sensitivity were examined using bioinformatics analysis and confirmed by experiments exploiting human specimens, in vitro and in vivo models. ResultsMCU copy numbers increase with MCU gene expression. MCU expression, but not MCU genetic alterations, had a positive correlation with known BC prognostic markers. Higher MCU levels in BC showed modest efficacy in predicting overall survival. In addition, high MCU expression was associated with known BC prognostic markers and with malignancy. In BC tumor and sgRNA-treated cell lines, enrichment pathways identified the involvement of cell cycle and immunity. miR-29a was recognized as a negative epigenetic regulator of MCU. High MCU levels were associated with increased mutation levels in oncogene TP53 and tumor suppression gene CDH1, as well as with an immunosuppressive microenvironment. Sigle-cell sequencing indicated that MCU mostly mapped on to tumor cell and CD8 T-cells. Inter-databases verification further confirmed the aforementioned observation. miR-29a-mediated knockdown of MCU resulted in tumor suppression and mitochondrial dysfunction, as well as diminished metastasis. Furthermore, MCU present pharmacogenetic significance in cellular docetaxel sensitivity and in prediction of patients’ response to chemotherapeutic regimen. ConclusionMCU shows significant implication in prognosis, outcome prediction, microenvironmental shaping and precision medicine for BC. miR-29a-mediated MCU inhibition exerts therapeutic effect in tumor growth and metastasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call