Abstract

While the role of mitochondrial Ca²⁺ homeostasis in cell pathophysiology is widely accepted, the possibility that cAMP regulates mitochondrial functions has only recently received experimental support. The site of cAMP production, its targets, and its functions in the organelles remain uncertain. Using a variety of genetic/pharmacological tools, we here demonstrate that the mitochondrial inner membrane is impermeable to cytosolic cAMP, while an autonomous cAMP signaling toolkit is expressed in the matrix. We demonstrate that rises in matrix Ca²⁺ powerfully stimulate cAMP increases within mitochondria and that matrix cAMP levels regulate their ATP synthesizing efficiency. In cardiomyocyte cultures, mitochondrial cAMP can be increased by treatments that augment the frequency and amplitude of Ca²⁺ oscillations within the cytosol and organelles, revealing that mitochondria can integrate an oscillatory Ca²⁺ signal to increase cAMP in their matrix. The present data reveal the existence, within mitochondria, of a hitherto unknown crosstalk between Ca²⁺ and cAMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.