Abstract
Reenergization of ischemic cardiomyocytes may be associated with acute necrotic cell death due in part to cytosolic Ca2+ overload and opening of a permeability transition pore (PTP) in mitochondria. It has been suggested that Ca2+ overload during ischemia primes mitochondria for PTP opening during reperfusion. We investigated the ability of mitochondria to uptake Ca2+ during simulated ischemia (SI) and whether this uptake determines PTP opening and cell death upon simulated reperfusion (SR). Rat heart mitochondria were submitted to either hypoxia (anoxic chamber) or to SI (respiratory inhibition, substrate depletion and acidosis) and subsequent SR. Mitochondrial Ca2+ uptake was monitored using Ca2+ microelectrodes after exposure to different [Ca2+] up to 25 microM during SI, and PTP opening was assessed by quantification of mitochondrial swelling (changes in absorbance rate at 540 nm) and calcein release. Mitochondrial Ca2+ uptake (Rhod-2 fluorescence) and cytosolic Ca2+ rise (Fura-2 ratio fluorescence) were further investigated in HL-1 cardiac myocytes submitted to SI/SR, and the effect of reducing mitochondrial Ca2+ load (with 25 microM ruthenium red) or blocking PTP opening (with 0.5 microM cyclosporin A) on the rate of cell death was investigated in adult cardiomyocytes exposed to SI/SR. SI induced a progressive dissipation of mitochondrial membrane potential (TMRE fluorescence); however, prior to the completion of depolarization, high levels of Ca2+ uptake were observed in mitochondria. SR induced PTP opening but this phenomenon was not influenced by the magnitude of mitochondrial Ca2+ uptake during previous SI. Blockade of the mitochondrial Ca2+ uniporter during SI in cardiomyocytes attenuated mitochondrial Ca2+ uptake but increased cytosolic Ca2+ overload and cell death upon subsequent SR. Mitochondrial Ca2+ uptake during SI buffers cytosolic Ca2+ overload but its magnitude appears not to be an important determinant of PTP opening upon subsequent SR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.