Abstract

The most frequent form of hereditary blindness, autosomal dominant optic atrophy (ADOA), is caused by the mutation of the mitochondrial protein Opa1 and the ensuing degeneration of retinal ganglion cells. Previously we found that knockdown of OPA1 enhanced mitochondrial Ca2+ uptake (Fülöp et al., 2011). Therefore we studied mitochondrial Ca2+ metabolism in fibroblasts obtained from members of an ADOA family. Gene sequencing revealed heterozygosity for a splice site mutation (c. 984+1G>A) in intron 9 of the OPA1 gene. ADOA cells showed a higher rate of apoptosis than control cells and their mitochondria displayed increased fragmentation when forced to oxidative metabolism. The ophthalmological parameters critical fusion frequency and ganglion cell–inner plexiform layer thickness were inversely correlated to the evoked mitochondrial Ca2+ signals. The present data indicate that enhanced mitochondrial Ca2+ uptake is a pathogenetic factor in the progress of ADOA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.