Abstract

We recently found that long-term exposure to nitric oxide (NO) triggers mitochondrial biogenesis in mammalian cells and tissues by activation of guanylate cyclase and generation of cGMP. Here, we report that the NO/cGMP-dependent mitochondrial biogenesis is associated with enhanced coupled respiration and content of ATP in U937, L6, and PC12 cells. The observed increase in ATP content depended entirely on oxidative phosphorylation, because ATP formation by glycolysis was unchanged. Brain, kidney, liver, heart, and gastrocnemius muscle from endothelial NO synthase null mutant mice displayed markedly reduced mitochondrial content associated with significantly lower oxygen consumption and ATP content. In these tissues, ultrastructural analyses revealed significantly smaller mitochondria. Furthermore, a significant reduction in the number of mitochondria was observed in the subsarcolemmal region of the gastrocnemius muscle. We conclude that NO/cGMP stimulates mitochondrial biogenesis, both in vitro and in vivo, and that this stimulation is associated with increased mitochondrial function, resulting in enhanced formation of ATP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.