Abstract

Mitochondrial fission has been noted in the pathogenesis of dilated cardiomyopathy (DCM), but the underlying specific regulatory mechanism, especially in the development of doxorubicin (DOX)-induced cardiomyopathy remains unclear. In the present study, we explore whether the aspartate-glutamate carrier1 (AGC1) interacts with the fission protein dynamin-related protein 1 (Drp1) and reveal the functional and molecular mechanisms contributing to DOX-induced cardiomyopathy. Results of co-immunoprecipitation mass spectrometry (CO-IP MS) analysis based on heart tissue of DCM patients revealed that AGC1 expression was significantly upregulated in DCM-induced injury and AGC1 level was closely correlated with mitochondrial morphogenesis and function. We showed that AGC1 knockdown protected mice from DOX-induced cardiomyopathy by preventing mitochondrial fission, while the overexpression of AGC1 in the mouse heart led to impairment of cardiac function. Mechanistically, AGC1 overexpression could upregulate Drp1 expression and contribute to subsequent excessive mitochondrial fission. Specifically, AGC1 knockdown or the use of Drp1-specific inhibitor Mdivi-1 alleviated cardiomyocyte apoptosis and inhibited impairment of mitochondrial function induced by DOX exposure. In summary, our data illustrate that AGC1, as a novel contributor to DCM, regulates cardiac function via Drp1-mediated mitochondrial fission, indicating that targeting AGC1-Drp1 axis could be a potential therapeutic strategy for DOX-induced cardiomyopathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call