Abstract

BackgroundCachexia is a wasting condition that manifests in several types of cancer, and the main characteristic is the profound loss of muscle mass. MethodsThe Yoshida AH-130 tumor model has been used and the samples have been analyzed using transmission electronic microscopy, real-time PCR and Western blot techniques. ResultsUsing in vivo cancer cachectic model in rats, here we show that skeletal muscle loss is accompanied by fiber morphologic alterations such as mitochondrial disruption, dilatation of sarcoplasmic reticulum and apoptotic nuclei. Analyzing the expression of some factors related to proteolytic and thermogenic processes, we observed in tumor-bearing animals an increased expression of genes involved in proteolysis such as ubiquitin ligases Muscle Ring Finger 1 (MuRF-1) and Muscle Atrophy F-box protein (MAFBx). Moreover, an overexpression of both sarco/endoplasmic Ca2+-ATPase (SERCA1) and adenine nucleotide translocator (ANT1), both factors related to cellular energetic efficiency, was observed. Tumor burden also leads to a marked decreased in muscle ATP content. ConclusionsIn addition to muscle proteolysis, other ATP-related pathways may have a key role in muscle wasting, both directly by increasing energetic inefficiency, and indirectly, by affecting the sarcoplasmic reticulum–mitochondrial assembly that is essential for muscle function and homeostasis. General significanceThe present study reports profound morphological changes in cancer cachectic muscle, which are visualized mainly in alterations in sarcoplasmic reticulum and mitochondria. These alterations are linked to pathways that can account for energy inefficiency associated with cancer cachexia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.