Abstract

Riboflavin transporter deficiency (RTD) is a childhood-onset neurodegenerative disorder characterized by progressive pontobulbar palsy, sensory and motor neuron degeneration, sensorineural hearing loss, and optic atrophy. As riboflavin (RF) is the precursor of FAD and FMN, we hypothesize that both mitochondrial and peroxisomal energy metabolism pathways involving flavoproteins could be directly affected in RTD, thus impacting cellular redox status. In the present work, we used induced pluripotent stem cells (iPSCs) from RTD patients to investigate morphofunctional features, focusing on mitochondrial and peroxisomal compartments. Using this model, we document the following RTD-associated alterations: (i) abnormal colony-forming ability and loss of cell-cell contacts, revealed by light, electron, and confocal microscopy, using tight junction marker ZO-1; (ii) mitochondrial ultrastructural abnormalities, involving shape, number, and intracellular distribution of the organelles, as assessed by focused ion beam/scanning electron microscopy (FIB/SEM); (iii) redox imbalance, with high levels of superoxide anion, as assessed by MitoSOX assay accompanied by abnormal mitochondrial polarization state, evaluated by JC-1 staining; (iv) altered immunofluorescence expression of antioxidant systems, namely, glutathione, superoxide dismutase 1 and 2, and catalase, as assessed by quantitatively evaluated confocal microscopy; and (v) peroxisomal downregulation, as demonstrated by levels and distribution of fatty acyl β-oxidation enzymes. RF supplementation results in amelioration of cell phenotype and rescue of redox status, which was associated to improved ultrastructural features of mitochondria, thus strongly supporting patient treatment with RF, to restore mitochondrial- and peroxisomal-related aspects of energy dysmetabolism and oxidative stress in RTD syndrome.

Highlights

  • Flavins are a family of ubiquitous water-soluble compounds, sharing the basic structure of 7,8-dimethyl-10-alkylisoalloxazine and participating in many biochemical reactions as coenzymes [1]

  • The identified mutations were confirmed by Sanger sequencing on DNA extracted from riboflavin transporter deficiency (RTD) induced pluripotent stem cells (iPSCs) pellets, while Ctrl is negative for the mutations (Figure 1)

  • The generation of iPSCs from patients affected with rare genetic disease allows to overcome ethical and technical problems due to manipulation of stem cells, allowing for site-specific genetic correction

Read more

Summary

Introduction

Flavins are a family of ubiquitous water-soluble compounds, sharing the basic structure of 7,8-dimethyl-10-alkylisoalloxazine and participating in many biochemical reactions as coenzymes [1]. Riboflavin (RF), known as vitamin B2, is the precursor of all biologically important flavins, and it is widely distributed throughout the plant and animal kingdoms [2]. Ever since their discovery and characterization, RF and its derivatives have been recognized by their ability to transfer single electrons, hydrogen atoms, and hydride ions, making flavoenzymes highly versatile, in terms of substrate modifications and types of reactions. The direct involvement of FAD and FMN, as rate limiting factors in energy metabolism, is widely accepted, as well as the direct correlation between the rate of cellular energy metabolism and the levels of FAD and FMN [3,4,5]. Subunits of the respiratory chain complexes I and II, as well as the electron transfer flavoprotein and its ubiquinone oxidoreductase, localized to the inner mitochondrial membrane, drive electrons from several reduced flavoproteins to ubiquinone and to complex III of the respiratory chain [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call