Abstract

BackgroundThe black-lip rock oyster (Saccostrea echinata) has considerable potential for aquaculture throughout the tropics. Previous attempts to farm S. echinata failed due to an insufficient supply of wild spat; however, the prospect of hatchery-based aquaculture has stimulated renewed interest, and small-scale farming is underway across northern Australia and in New Caledonia. The absence of knowledge surrounding the population genetic structure of this species has raised concerns about the genetic impacts of this emerging aquaculture industry. This study is the first to examine population genetics of S. echinata and employs both mitochondrial cytochrome c oxidase subunit I gene (COI) and single nucleotide polymorphism (SNP) markers.ResultsThe mitochondrial COI data set included 273 sequences of 594 base pair length, which comprised 74 haplotypes. The SNP data set included 27,887 filtered SNPs for 272 oysters and of these 31 SNPs were identified as candidate adaptive loci. Data from the mitochondrial COI analyses, supports a broad tropical Indo-Pacific distribution of S. echinata, and showed high haplotype and nucleotide diversities (0.887–1.000 and 0.005–0.008, respectively). Mitochondrial COI analyses also revealed a ‘star-like’ haplotype network, and significant and negative neutrality tests (Tajima’s D = − 2.030, Fu’s Fs = − 25.638, P < 0.001) support a recent population expansion after a bottleneck. The SNP analyses showed significant levels of population subdivision and four genetic clusters were identified: (1) the Noumea (New Caledonia) sample location; (2) the Bowen (north Queensland, Australia) sample location, and remaining sample locations in the Northern Territory, Australia (n = 8) were differentiated into two genetic clusters. These occurred at either side of the Wessel Islands and were termed (3) ‘west’ and (4) ‘east’ clusters, and two migrant individuals were detected between them. The SNP data showed a significant positive correlation between genetic and geographic distance (Mantel test, P < 0.001, R2 = 0.798) and supported isolation by distance. Three candidate adaptive SNPs were identified as occurring within known genes and gene ontology was well described for the sex peptide receptor gene.ConclusionsData supports the existence of genetically distinct populations of S. echinata, suggesting that management of wild and farmed stocks should be based upon multiple management units. This research has made information on population genetic structure and connectivity available for a new aquaculture species.

Highlights

  • The black-lip rock oyster (Saccostrea echinata) has considerable potential for aquaculture throughout the tropics

  • This study aims to fill this knowledge gap by analysing both mitochondrial and nuclear Deoxyribonucleic acid (DNA) markers to assess the population genetic structure and the neutral and adaptive genetic diversity of S. echinata across northern Australia

  • Kimura 2-parameter (K2P) distance between all localities in this study and from those obtained from GenBank (i.e. Malaysia, Taiwan, Japan and Western Australia) are provided in Additional file 1

Read more

Summary

Introduction

The black-lip rock oyster (Saccostrea echinata) has considerable potential for aquaculture throughout the tropics. Genome-wide SNPs can reveal fine-scale patterns of population structure, dispersal capabilities, population assignment, and detect signatures of selection [13,14,15], with much higher resolution than traditional markers (e.g. allozymes and microsatellites). The use of these technologies in the detection of finescale structure and signatures of selection are important for determining management units, in populations that may otherwise appear homogenous in their distribution [10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call