Abstract

A3 adenosine receptor agonist (IB-MECA) has been shown to play important roles in cell proliferation and apoptosis in a variety of cancer cell lines. The present study was designed to understand the mechanism underlying IB-MECA-induced apoptosis in human ovarian cancer cell lines. The messenger RNA (mRNA) and protein expression levels of A3 adenosine receptor were detected in OVCAR-3 and Caov-4 ovarian cancer cells. IB-MECA was capable of decreasing intracellular cyclic adenosine monophosphate (cAMP) that was the reason for the presence of functional A3 adenosine receptor on the cell lines. IB-MECA significantly reduced cell viability in a dose-dependent manner. Cytotoxicity of IB-MECA was suppressed by MRS1220, an A3 adenosine receptor antagonist. The growth inhibition effect of IB-MECA was related to the induction of cell apoptosis, which was manifested by annexin V-FITC staining, activation of caspase-3 and caspase-9, and loss of mitochondrial membrane potentials (ΔΨm). In addition, downregulation of the regulatory protein Bcl-2 and upregulation of Bax protein by IB-MECA were also observed. These findings demonstrated that IB-MECA induces apoptosis via the mitochondrial signaling pathway. These suggest that A3 adenosine receptor agonists may be a potential agent for induction of apoptosis in human ovarian cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.