Abstract

Respiratory electron transport has two ubiquinol-oxidizing pathways, the cytochrome pathway (CP) and the alternative pathway (AP). The AP, which is catalyzed by the alternative oxidase (AOX), is energetically wasteful but may alleviate PSII photoinhibition under light conditions excessive for photosynthesis. However, its mechanism remains unknown. We used Arabidopsis aox1a mutants lacking AOX activity and studied the mutation's effects on photoinhibition by measuring the decrease in the maximum quantum yield of PSII (Fv/Fm) after high light exposure. Since the CP compensates for the lack of AOX, we monitored the extent of photoinhibition under conditions where CP activity is partially inhibited by antimycin A. When leaves were exposed to high light at 350 µmol m-2 s-1, the decline in Fv/Fm was significantly faster in the aox1a mutants than in the wild type. However, under conditions where photorespiration was suppressed by high CO2 or low O2 levels, the decline in Fv/Fm was suppressed in the aox1a mutants, but not in the wild type, making the difference between the wild type and mutants small. Our results demonstrate that the lack of the AP causes an acceleration of PSII photoinhibition in relation to the photorespiratory pathway, suggesting that the AP can support the activity of the photorespiratory pathway under high light conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.