Abstract
Mitochondrial impairment is one of the most important hallmarks of Parkinson's disease (PD) pathogenesis. In this work, we wanted to verify the molecular basis of altered mitochondrial dynamics and disposal in Substantia nigra specimens of sporadic PD patients, by the comparison with two cellular models of PD. Indeed, SH-SY5Y cells were treated with either dopamine or 1-methyl-4-phenylpyridinium (MPP+) in order to highlight the effect of altered dopamine homeostasis and of complex I inhibition, respectively. As a result, we found that fusion impairment of the inner mitochondrial membrane is a common feature of both PD human samples and cellular models. However, the effects of dopamine and MPP+ treatments resulted to be different in terms of the mitochondrial damage induced. Opposite changes in the levels of two mitochondrial protein markers (voltage-dependent anion channels (VDACs) and cytochrome c oxidase subunit 5β (COX5β)) were observed. In this case, dopamine treatment better recapitulated the molecular picture of patients' samples. Moreover, the accumulation of PTEN-induced putative kinase 1 (PINK1), a mitophagy marker, was not observed in both PD patients samples and cellular models. Eventually, in transmission electron microscopy images, small electron dense deposits were observed in mitochondria of PD subjects, which are uniquely reproduced in dopamine-treated cells. In conclusion, our study suggests that the mitochondrial molecular landscape of Substantia nigra specimens of PD patients can be mirrored by the impaired dopamine homeostasis cellular model, thus supporting the hypothesis that alterations in this process could be a crucial pathogenetic event in PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.