Abstract

Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single- and double CK-knock-out mice strains (cytosolic (M-CK-/-), mitochondrial (Mi-CK-/-) and double knock-out (MiM-CK-/-), respectively). Maximal ADP-stimulated oxygen consumption flux (State3 Vmax; nmol O2 x mg mitochondrial protein(-1) x min(-1)) and ADP affinity (K50ADP; microM) were determined by respirometry. State 3 Vmax and of M-CK-/- and MiM-CK-/- gastrocnemius mitochondria were twofold higher than those of WT, but were unchanged for Mi-CK-/-. For mutant cardiac mitochondria, only the of mitochondria isolated from the MiM-CK-/- phenotype was different (i.e. twofold higher) than that of WT. The implications of these adaptations for striated muscle function were explored by constructing force-flow relations of skeletal muscle respiration. It was found that the identified shift in affinity towards higher ADP concentrations in MiM-CK-/- muscle genotypes may contribute to linear mitochondrial control of the reduced cytosolic ATP free energy potentials in these phenotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call