Abstract

SARS-CoV-2 is a positive sense RNA coronavirus that constitutes a new threat for the global community and economy. While vaccines against SARS-CoV-2 are being developed, the mechanisms through which this virus takes control of an infected cell to replicate remains poorly understood. Upon infection, viruses completely rely on host cell molecular machinery to survive and replicate. To escape from the immune response and proliferate, viruses strategically modulate cellular metabolism and alter subcellular organelle architecture and functions. One way they do this is by modulating the structure and function of mitochondria, a critical cellular metabolic hub but also a key platform for the regulation of cellular immunity. This versatile nature of mitochondria defends host cells from viruses through several mechanisms including cellular apoptosis, ROS signaling, MAVS activation and mitochondrial DNA-dependent immune activation. These events are regulated by mitochondrial dynamics, a process by which mitochondria alter their structure (including their length and connectivity) in response to stress or other cues. It is therefore not surprising that viruses, including coronaviruses hijack these processes for their survival. In this review, we highlight how positive sense RNA viruses modulate mitochondrial dynamics and metabolism to evade mitochondrial mediated immune response in order to proliferate.

Highlights

  • The COVID-19 pandemic outbreak caused by the novel coronavirus SARS-CoV-2 has infected around 18.51 million people globally as of August 2020, causing severe loss of human life and economic turmoil (Rothan and Byrareddy, 2020)

  • Mitochondria are the main source of cellular energy, and control key cellular processes associated with metabolism and immune responses

  • We summarize how (+)ssRNA viruses manipulate mitochondrial functions and host immunity to stimulate viral replication, and provide possible mechanisms through which SARS-CoV-2 achieves this

Read more

Summary

INTRODUCTION

The COVID-19 pandemic outbreak caused by the novel coronavirus SARS-CoV-2 has infected around 18.51 million people globally as of August 2020, causing severe loss of human life and economic turmoil (Rothan and Byrareddy, 2020). As other (+)ssRNA virus, the SARS-CoV-2 genome codes for the structural proteins that make up the virion (spike (S), envelope (E), membrane glycoprotein (M), nucleocapsid (N)), as well as non-structural proteins and accessory proteins necessary for viral replication (Chan et al, 2020; Gordon et al, 2020). These proteins are multifunctional and serve for viral replication and to manipulate host functions (Table 1) (Gordon et al, 2020; Lu et al, 2020). M Protein SARS CoV-2 SARS-CoV N Protein SARS-CoV N/E/ C protein HCV NSP3 HCV NSP4 SARS-CoV-2 NSP4a HCV NSP4b DENV/ZIKA DENV HCV

Consequences on Cell Physiology
VIRAL CONTROL OF MITOCHONDRIAL DYNAMICS AND METABOLISM
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.