Abstract
Phytochemical antioxidants like gallic and caffeic acid are constituents of the normal human diet that display beneficial health effects, potentially via activating stress response pathways. Using primary human skin fibroblasts (PHSFs) as a model, we here investigated whether such pathways were induced by novel mitochondria-targeted variants of gallic acid (AntiOxBEN2) and caffeic acid (AntiOxCIN4). Both molecules reduced cell viability with similar kinetics and potency (72 h incubation, IC50 ~23 μM). At a relatively high but non-toxic concentration (12.5 μM), AntiOxBEN2 and AntiOxCIN4 increased ROS levels (at 24 h), followed by a decline (at 72 h). Further analysis at the 72 h timepoint demonstrated that AntiOxBEN2 and AntiOxCIN4 did not alter mitochondrial membrane potential (Δψ), but increased cellular glutathione (GSH) levels, mitochondrial NAD(P)H autofluorescence, and mitochondrial superoxide dismutase 2 (SOD2) protein levels. In contrast, cytosolic SOD1 protein levels were not affected. AntiOxBEN2 and AntiOxCIN4 both stimulated the gene expression of Nuclear factor erythroid 2-related factor 2 (NRF2; a master regulator of the cellular antioxidant response toward oxidative stress). AntiOxBEN2 and ANtiOxCIN4 differentially affected the gene expression of the antioxidants Heme oxygenase 1 (HMOX1) and NAD(P)H dehydrogenase (quinone) 1 (NQO1). Both antioxidants did not protect from cell death induced by GSH depletion and AntiOxBEN2 (but not AntiOxCIN4) antagonized hydrogen peroxide-induced cell death. We conclude that AntiOxBEN2 and AntiOxCIN4 increase ROS levels, which stimulates NRF2 expression and, as a consequence, SOD2 and GSH levels. This highlights that AntiOxBEN2 and AntiOxCIN4 can act as prooxidants thereby activating endogenous ROS-protective pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.