Abstract
BackgroundPeripheral T-cell lymphomas (PTCL) are aggressive lymphomas with poor prognosis, and therefore, there is a pressing need to explore new targets or compounds. Mitochondria may serve as a potential therapeutic target for PTCL. A designed positively-charged segment (pKV) is anchored to the specific 15 amino acid sequence (MIASHLLAYFFTELN) to yield a cell-penetrating peptide (pHK-pKV) and a lipid chain (Pal) is conjugated to the N-terminus of pHK-pKV (Pal-pHK-pKV) are bioactive amphiphilic peptide assemblies targeting the interaction between mitochondrial voltage dependent anion channel 1 (VDAC1) and hexokinase II (HKII).MethodsPTCL cell line H9 was treated with Pal-pHK-pKV and pHK-pKV, respectively. Cell proliferation in each group was measured by detecting cell viability and the corresponding marker Ki-67. Apoptosis was detected by immunofluorescence, flow cytometry and western blot. We also measured mitochondrial membrane potential, adenosine triphosphate (ATP) production, the cytochrome c distribution and the expression levels of B cell lymphoma 2 (BCL-2) and BCL-2 associated X protein (BAX). Western blot was used to detect the activation of the extracellular regulated protein kinases (ERK) signaling pathway.ResultsPal-pHK-pKV and pHK-pKV with 20 µM blocked the interaction between VDAC1 and HKII, and detached HKII from mitochondria, which depolarized the mitochondrial membrane potential, induced mitochondria dysfunction, and decreased ATP production. The decreased ATP subsequently inhibited the activation of the ERK/BCL-2 pathway and increased the BAX/BCL-2 ratio. Cytochrome c was then released from the mitochondria and induced capase-3 activation and subsequently apoptosis. Additionally, decreased ATP induced the expression of FAS and then apoptosis.ConclusionsMitochondria specific peptide amphiphiles induce mitochondrial dysfunction and provide a new approach for the treatment of PTCL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.